翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

inverse mean curvature flow : ウィキペディア英語版
inverse mean curvature flow
In the field of differential geometry in mathematics, inverse mean curvature flow (IMCF) is an example of a geometric flow of hypersurfaces of a Riemannian manifold (for example, smooth surfaces in 3-dimensional Euclidean space). Intuitively, a family of surfaces evolves under IMCF if the outward normal speed at which a point on the surface moves is given by the reciprocal of the mean curvature of the surface. For example, a round sphere evolves under IMCF by expanding outward uniformly at an exponentially growing rate (see below). In general, this flow does not exist (for example, if a point on the surface has zero mean curvature), and even if it does, it generally develops singularities. Nevertheless, it has recently been an important tool in differential geometry and mathematical problems in general relativity.
== Example: a round sphere ==
Consider a two-dimensional sphere of radius R(t) evolving under IMCF in 3-dimensional Euclidean space, where t is the time parameter of the flow. (By symmetry considerations, a round sphere will remain round under this flow, so that the radius at time t determines the surface at time t.) The outward speed under the flow is the derivative, R'(t), and the mean curvature equals \frac. (This may be computed from the first variation of area formula.) Setting the speed equal to the reciprocal of the mean curvature, we have the ordinary differential equation
:\frac=\frac,
which possesses a unique, smooth solution given by
:R(t) = R_0 e^,
where R_0 is the radius of the sphere at time t=0. Thus, in this case we see that a round sphere evolves under IMCF by uniformly expanding outward with an exponentially increasing radius.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「inverse mean curvature flow」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.